 (

Research
Manual
Student Name: Wen Liu
ID Number: C00105088
Project
:
Fingerprint
 Recognition
Supervisor:
 Nigel Whyte (M.Sc. MIEEE)
Date:
30
/11/200
9

)[image: logo][image: http://i1.ce.cn/sci/swsm/200904/16/W020090416335231771883.jpg]

Contents

1. Introduction		………………………………………………………………	2

2. Techniques overview		……………………………………………………..	4

2.1	Image enhancement, ridge extraction and binarization	………………..	5
2.2	Thinning 	……………………………………………………………….	6
2.3	Minutiae extraction	……………………………………………………..	7
2.4	Matching and recognition	 ……………………………………………....	8

3. Detailed technique research	………………………………………………....	9

3.1	BMP image file	…………………………………………………………..	9
3.2	Edge detection techniques 	……...……………………………………..	11
		3.2.1 Sobel edge detection	..	11
		3.2.2 Laplace method		………………………………………………....	12
		3.2.3 Canny edge detection	..	13
		3.2.4 The edge detection technique I would like to use	………………..	15
	3.3	Image thinning techniques	……………………………………………	16
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3.3.1 Iterative morphological thinning	..	17
3.3.2 Zhang-Suen Thinning – The algorithm I would like to use	18
	3.4	Minutiae extraction and validation	 ……………………………………....	19
	3.5	Minutiae matching	……………………………………………………..	24
		3.5.1 Orientation field detection	...	24
		3.5.2 Minutiae matching	………………………………………………...	27
4.	Other relevant researches	………………………………………………...	29
	
4.1	Database structure	……………………………………………………..	29
4.2	Programming language	………………………………………………...	30

5.	Conclusions		………………………………………………………………	31

Bibliography	……………………………………………………………….	32

1. Introduction

With increasingly urgent need for reliable security, biometrics is being spotlighted as the authentication method for the next generation. Among numerous biometric technologies, fingerprint recognition is the most mature biometric personal identification technique in these days.

Every other features of an individual, such as gait, face, or signature may change with passage of time and may be fabricated or imitated. However, the fingerprint is completely unique to an individual and stayed unchanged for entire lifetime.

 (
Figure
2
 Henry Faulds (1843 - 1930)
)[image:] (
Figure
1
 A
Chinese
 deed of sale (1739) signed with a fingerprint.
)Fingerprint has been used as identity certification since antiquity in China and other antiquity cultures. In modern history, the first scientific paper on ridges, valleys & pore structures published in 1684 by Nehemiah Grew [1]. In 1788, a German doctor, J.C.A Mayer published a book which detailed described patterns of fingerprints [1]. After a hundred years, Henry [image: http://galton.org/fingerprints/images/faulds-1920-08-27-thumb.gif]Faulds, a Scottish physician became the first person who suggested “scientific identification of criminals” using fingerprints. Finally, in 1900, the Scotland Yard adopted Henry/Galton system of classification for fingerprint identification of criminals. It is the first time the fingerprint been used in judicature in the modern history [1]. FBI (the Federal Bureau of Investigation) set up the first fingerprint identification division with a database of 810,000 fingerprints in 1924 [1]. Nowadays, FBI is using the Integrated Automated Fingerprint Identification System (IAFIS) which was invented in 2000 to processes and records criminal/ civil fingerprint with a database of 47,000,000 subjects. Each subject contains 10 fingerprints. This system conducts an average of 50,000 searches per day and the response time is 2 hours for a criminal search and 24 hours for civilian search [2].

Fingerprints are now being used as a secure and effective authentication method in numerous fields, including financial, medical, e-commerce and entrance control applications. (See Figure3 below)Modern applications of fingerprint technology rely in large part on the development of exceptionally compact fingerprint sensors.

[image: http://www.ravirajtech.com/images/img_04.gif]

 (
Figure
1
 The
classified
figure of fingerprint recognition market
)Fingerprint recognition refers to automated method and algorithm of verifying a match between two human fingerprints. This paper touches on researches I did on every common process in fingerprint recognition and its relevant algorithms.

2. Technique Overview

In general, the analysis of fingerprints for matching purposes requires the comparison of several features of the print pattern.	These include patterns, which are aggregate characteristics of ridges, and minutia points, which are unique features found within the patterns.

There are three different basic patterns of fingerprint: Loop, Arch and Whorl.
[image: arch][image: whorl][image: loop]

	(Loop) (Arch) (Whorl)
 (
Figure
2
 Three different basic patterns
)
	
	

	The major minutia features of fingerprint ridges are: ridge ending, bifurcation, and short ridge (or dot). I will mention them in details in following section. The following figure shows the common processes of minutia extraction.
	
	

 (
Figure
3
 Flowchart of the minutia extraction algorithm
 [3]
)[image: http://www.chinaai.org/Images/resource/zhiwen3.jpg]
Those approaches up to minutiae extraction called preprocessing of fingerprint recognition.

[image:]

 (
Figure
4
 Preprocessing of fingerprint recognition
)

After the preprocessing phase, the two fingerprints can be verified by matching their minutiae, which called post processing of fingerprint recognition.

In general, the fingerprint recognition consists of six main steps:

(i) Image Enhancement
(ii) Ridge extraction
(iii) Binarization 		Pre-processing
(iv) Thinning

(v) Minutiae extraction
(vi) Matching and recognition		Post processing.

This section describes the overview of methods and algorithms about these techniques in turn.

2.1 Image Enhancement ,Ridge extraction and Binarization

The aim of image enhancement is to remove noises and sharpen the ridges. Enhancement improves the quality of a fingerprint image for image binarization and other further processes.

The common method to achieve image enhancement is segmenting the image into interest region (by using Laplacian edge detection or Sobel edge detection) and discardable area and then using filter (Gabor Filter, Gauss Filter etc.) to remove noise in interest region.

Binarization is also known as threshold process. In this process, image have been translated into binary form and compared with the threshold value. Those pixels with values greater than threshold value will be changed into write color and the others will be changed into black.

[image: 2-4][image: 2-2]

 (
Figure
5
.Original fingerprint image (left) and enhanced image (right)
)

2.2 Thinning

[image: 2-5]The objective of this step is to obtain a thinned image which all ridges on the image are only 1 pixel thick.
Thinning is an extremely important process to the entire fingerprint recognition. It is the precondition for Minutiae extraction and core point detection.

Some famous algorithms for image thinning are (as I known so far) Parallel Thinning, Morphological thinning and Zhang-Suen algorithm.

 (
Figure
6
.
 Image after thinning
)

[image:]

 (
Figure
7
 The basic idea of thinning
[4]
)

2.3 Minutiae Extraction

The minutiae are core points and major features of a fingerprint, using which comparisons of one print with another can be made.

The categories of minutiae showed as below:
	[image: http://www.chinaai.org/UploadFiles/200433021840784.gif]
	Ridge ending – the abrupt end of a ridge

	[image: http://www.chinaai.org/UploadFiles/200433021840833.gif]
	Ridge bifurcation – a single ridge that divides into two ridges

	[image: http://www.chinaai.org/UploadFiles/200433021841738.gif]
	Ridge Divergence - two parallel ridges divergent from this point

	[image: http://www.chinaai.org/UploadFiles/200433021841140.gif]
	Island – a single small ridge inside a short ridge or ridge ending that is not connected to all other ridges

	[image: http://www.chinaai.org/UploadFiles/200433021842472.gif]
	Ridge enclosure – a single ridge that bifurcates and reunites shortly afterward to continue as a single ridge

	[image: http://www.chinaai.org/UploadFiles/200433021842876.gif]
	Short ridge, or independent ridge – a ridge that commences, travels a short distance and then ends

In this process, minutiae will be detected and extracted.
[image: 2-7]
Figure 8. Minutiae in thinned fingerprint images [5]

After minutiae collection, those minutiae which not necessary for the matching process, will be removed using minutiae validation technique.

2.4 Matching and recognition

The minutiae can be represented in vectors (minutiae skeleton), which shows the distribution of minutiae and their orientation.
[image:][image:]

 (
Figure
9
. A pair of fingerprint image with minutiae skeleton represented
[6]
)

To compare two fingerprint images, we select minutiae in the first image, calculate the distances of the minutiae to the 10 closest minutiae (called neighbors) and the angles (orientations) of those minutiae. If in these 10 figures have 3 are some with figures in the second image, we say we found a matched minutiae. [7]

If there are more than 13 matched minutiae (suppose 13 matched minutiae is the threshold) in those two images, they are considered to same fingerprint.

[image:][image:]

 (
Figure
10

Comparison
 of minutiae from a pair of fingerprint.
T
he minutiae connected with green lines are matched minutiae.
[6]
)

3. Detailed technique research

3.1 BMP image file

On these days, BMP image is the most wildly used file format on fingerprint representation because it is the easiest one to understand, by both human and computer. It does not use compression, that making pixel data retrieval much easier. The table below shows how the pixel data is stored from the first byte to the last.

	TABLE 1: BMP File Structure [8]

	Byte # to fseek file pointer
	Information

	0
	Signature

	2
	File size

	18
	Width (number of columns)

	22
	Height (number of rows)

	28
	Bits/pixel

	46
	Number of colors used

	54
	Start of color table

	54 + 4*(number of colors)
	Start of raster data

In terms of image processing, the most important information is the following:
(1) Number of columns, which stored in byte #18.
(2) Number of rows, which stored in byte #22.
(3) Raster data.
To calculate raster data range, we use the following formula:

#byte of raster data starting=54 + 4*(number of colors used) [8]

The information of number of colors used stored in byte#46, For an 8-bit grayscale image, and the raster data would start at byte 54 + 1024 = 1078. The size of the raster data is (width x height)-1 bytes. Therefore, a 100 row by 100 column 8-bit grayscale image would have (100 x 100) -1 = 9,999 bytes of raster data starting at byte 1078 and continuing to the end of the BMP.
In C, the most efficient way of declaring this important information is that of struct. [8]

typedef struct { int rows;		 /* number of rows */
int cols;		 /* number of columns */
unsigned char* data; /* raster data */
} sImage;

For example, in an 8 bit BMP image, black is 0 and white is 255. That means the top left corner of BMP shown as below starts at a pixel value of 0 (black) and progressively works its way down the diagonal to pixel value of 255 (white). However, in a BMP, the rows increase from bottom to top. Therefore, row 0 and column 0 in a BMP would correspond to the bottom left corner.
[image: http://www.pages.drexel.edu/~weg22/TEST_web.bmp]
This bmp contains 20 rows and 20 columns, so we know we will have 400 bytes of raster data. We also know the raster data will start at byte #(54 + 4 * number of colors). The number of colors of the bmp is 256 because it is a grayscale image with colors ranging from 0 to 255. Therefore, the raster data will start at byte #1078 and the file size will be 1078 + 400 = 1478 bytes. Knowing this, we can collect the information about each pixel into a two-dimensional array.
	
	0
	1
	2
	3

	0
	[0][0]
	[0][1]
	[0][2]
	[0][3]

	1
	[1][0]
	[1][1]
	[1][2]
	[1][3]

	2
	[2][0]
	[2][1]
	[2][2]
	[2][3]

	3
	[3][0]
	[3][1]
	[3][2]
	[3][3]

	4
	[4][0]
	[4][1]
	[4][2]
	[4][3]

Each cell of the array will represents a pixel of the BMP. With this array, the fingerprint image pre-processing can then start.

3.2 Edges detection techniques

Edges in images are areas with strong intensity contrasts - a jump in intensity from one pixel to the next. Edge detecting an image significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image.

I did research on three different edge detection techniques: Canny edge detection, Sobel edge detection and Laplace method.

3.2.1 Sobel edge detection.

The Sobel operator performs a 2-D spatial gradient measurement on an image. Typically it is used to find the approximate absolute gradient magnitude at each point in an input grayscale image. The Sobel edge detector uses a pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). A convolution mask is usually much smaller than the actual image. As a result, the mask is slid over the image, manipulating a square of pixels at a time. See an example of actual Sobel masks below:
[image: http://www.pages.drexel.edu/~weg22/mask_s.jpg]

 (
Figure
11
 Sobel
operator
s
[9]
)

An approximate magnitude can be calculated using:
|G | = |Gx| +|Gy| [10]
The mask is slid over an area of the input image, changes that pixel's value and then shifts one pixel to the right and continues to the right until it reaches the end of a row. It then starts at the beginning of the next row. The example below shows the mask being slid over the top left portion of the input image represented by the green outline. The formula shows how a particular pixel in the output image would be calculated. The center of the mask is placed over the pixel you are manipulating in the image. For example, pixel (a22) by the corresponding mask value (m22). It is important to notice that pixels in the first and last rows, as well as the first and last columns cannot be manipulated by a 3x3 mask. This is because when placing the center of the mask over a pixel in the first row, the mask will be outside the image boundaries.
 (
Figure
12
 An example of Sobel edge detection
[10]
)[image: http://www.pages.drexel.edu/~weg22/maskdes.jpg]

3.2.2 Laplace method.

Just like Sobel edge detection, the Laplace method also uses a convoluted mask to approximate derivative. The differences are: Laplace method uses a single 5*5 Laplacian convoluted mask instead of two 3*3 masks; the Laplacian mask is used to approximate the second derivative, not the first.

Laplace uses 1 5x5 mask for the 2nd derivative in both the x and y directions. However, because these masks are approximating a second derivative measurement on the image, they are very sensitive to noise. The Laplace mask and code are shown below:
[image: http://www.pages.drexel.edu/~weg22/mask_l.jpg]

 (
Figure
13
 A Laplace
operator

[10]
)

The ideas of two algorithms are very similar, except a slight different because Laplace algorithm uses one mask instead of two.

3.2.3 Canny edge detection.

Canny edge detection is an improved edge detection technique. The canny edge detection first smoothes the image to eliminates the noise points.

“It then finds the image gradient to highlight regions with high spatial derivatives. The algorithm then tracks along these regions and suppresses any pixel that is not at the maximum (nonmaximum suppression). The gradient array is now further reduced by hysteresis. Hysteresis is used to track along the remaining pixels that have not been suppressed. Hysteresis uses two thresholds and if the magnitude is below the first threshold, it is set to zero (made a nonedge). If the magnitude is above the high threshold, it is made an edge. And if the magnitude is between the 2 thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient above T2.”
 (Bill Green -2002)

There are 6 steps [11] to achieve edge detection with Canny algorithm.

Step1.
The first step is to filter out any noise in the original image before trying to locate and detect any edges. The Gaussian filter can be computed using a simple mask and it is used exclusively in the Canny algorithm. Once a suitable mask has been calculated, the Gaussian smoothing can be performed using standard convolution methods. A convolution mask is usually much smaller than the actual image. As a result, the mask is slid over the image, manipulating a square of pixels at a time. “The larger the width of the Gaussian mask, the lower is the detector's sensitivity to noise”. [11] The localization error in the detected edges also increases slightly as the Gaussian width is increased. A sample Gaussian mask is shown below:
[image: http://www.pages.drexel.edu/~weg22/gauss_mask.jpg]

 (
Figure
14
.
Discrete approximation to Gaussian function with
=1.4

[11]
)

Step2.

After smoothing, the Sobel operator will be used to find the edge strength (magnitude). This step is exactly same with the main approach of Sobel edge detection I mentioned before.
Step3.

In this step, the direction of the edge will be detected. An error should be generated whenever sumX from last step is equal to 0. Whenever the gradient in the x direction is equal to zero, the edge direction has to be equal to 90 degrees or 0 degrees, depending on what the value of the gradient in the y-direction is equal to. If GY has a value of zero, the edge direction will equal 0 degrees. Otherwise the edge direction will equal 90 degrees. The formula for finding the edge direction is just:
theta = invtan (Gy / Gx) [12]
Step4.
Once the edge direction is known, the next step is to relate the edge direction to a direction that can be traced in an image. So if the pixels of a 5*5 image are aligned as follows [11]:
x x x x x
x x x x x
x x A x x
x x x x x
x x x x x

Then, it can be seen by looking at pixel "A", there are only four possible directions when describing the surrounding pixels:
-0 degrees (in the horizontal direction)
-45 degrees (along the positive diagonal)
-90 degrees (in the vertical direction)
-135 degrees (along the negative diagonal)

Therefore, any edge direction falling within the range of 0 to 22.5 or 157.5 to 180 degrees is set to be 0 degrees.
Any edge direction falling within the range of 22.5 to 67.5 degrees is set to 45 degrees.
Any edge direction falling within the range of 67.5 to 112.5 degrees is set to 90 degrees.
Any edge direction falling within the range of 122.5 to 157.5 degrees is set to 135 degrees.

Step5.

After the edge directions detection, non-maximum suppression now has to be applied. Non-maximum suppression is used to trace along the edge in the edge direction and suppress any pixel value (sets it equal to 0) that is not considered to be an edge. This will give a thin line in the output image.

Step6.

The final step is to eliminate streaking called “hysteresis”. “Streaking is the breaking up of an edge contour caused by the operator output fluctuating above and below the threshold.” [11] If a single threshold, T1 is applied to an image, and an edge has an average strength equal to T1, then due to noise, there will be instances where the edge dips below the threshold. Equally it will also extend above the threshold making an edge look like a dashed line. To avoid this, hysteresis uses 2 thresholds, a high and a low. Any pixel in the image that has a value greater than T1 is presumed to be an edge pixel, and is marked as such immediately. Then, any pixels that are connected to this edge pixel and that have a value greater than T2 are also selected as edge pixels. If you think of following an edge, you need a gradient of T2 to start but you don't stop till you hit a gradient below T1.

3.2.4 The edge detection technique I would like to use.

After research on above three most famous edge detection techniques and compare output images of them, I would like to use a combined algorithm for my own project.

This algorithm smoothes the original image firstly and then uses Sobel masks (two 3*3 convolution masks) to detect edges.

The results of three different edge detection methods are shown as below: [10] [11]
[image: http://www.pages.drexel.edu/~weg22/LENAG.bmp]

 (
Figure
15

(a)Original image

)

[image: http://www.pages.drexel.edu/~weg22/EDGELAP.BMP][image: http://www.pages.drexel.edu/~weg22/edgeSob.bmp][image: http://www.pages.drexel.edu/~weg22/lena_can.bmp]

(b)Output of Canny algorithm	(c)Output of Laplace method	(d)Output of Sobel method

From above images we can easily find out that Canny algorithm gave the most distinct contrast output (b). The Sobel method gave a very smooth result (d). The problem of Canny algorithm is the output image is a skeleton image. It seems like a thinned image. I thought it may cause some problems in thinning process next. Output of a fingerprint image may become like the figure below:
[image:][image:]

 (
Figure
16
. The output of Canny edge detection. Red arrow points to a ridge represented by a
circle
.
)

From the output image, we can find out the Canny algorithm change the ridges of fingerprint into hollow lines. It will lead thinning process to a nightmare. The expectant result should be an image with all ridges represented in solid lines.

The algorithm I would like to use will be a combined algorithm, which use Gaussian mask to smooth the image and then use two Sobel convolution masks to detect edges.
The output of this algorithm should be an image similar with the output of Sobel algorithm but with less noise.

3.3 Image thinning techniques

Thinning is a morphological operation that is used to remove selected foreground pixels from binary image. It is one of the most important steps for minutiae extraction.

One of the most common uses of thinning is to reduce the threshold output of an edge detector such as the Sobel operator to lines of a single pixel thickness, while preserving the full length of those lines (i.e. pixels at the extreme ends of lines should not be affected):

 (
Figure
17
 An imge after thinning process
[13]
)[image: http://homepages.inf.ed.ac.uk/rbf/HIPR2/figs/thnskxmp.gif]	
This effect can be achieved using morphological thinning by iterating until convergence with the structuring elements shown above.

3.3.1 Iterative Morphological Thinning
F. W. M. Stentiford introduced Iterative Morphological Thinning in1983. This method uses four 3X3 templates to eliminate pixels which are not in the skeleton.
These four templates showed as below:
[image:]
(a) (b) (c) (d)

The sequence of this algorithm is [14]:

1. Find location (i,j) in image who matches template (a). i,j are index of row and column of image matrix.

2. If origin is not an endpoint* and connectivity** = 1, mark it for delete.

3. Repeat step 1 and 2 for all pixel locations matching template (a)

4. Repeat step 1, 2 and 3 for template (b), (c) and (d).

5. If any pixels marked for deletion, delete them.

6. If any pixels are deleted, repeat process from step 1, otherwise process stop.

* A pixel is an endpoint if it has only one neighbor.
** Check connectivity because we don’t want to split the skeleton.

The connectivity can be calculated by following formula [13]:
	 [image:]
[image:]S = {1, 3, 5, 7}
Origin = N0
Nk = 1, if pixel is background
Nk = 0, if pixel is foreground

After the process, the skeleton of the image will be produced.

Although Iterative Morphological Thinning is a wildly used method of image thinning, I still decided that I will not to use this method because it is not an efficient algorithm and the skeletons produced by this method often contain undesirable short spurs produced by small irregularities in the boundary of the original image. These problems may lead to low veracity of minutiae extraction.

3.3.2 Zhang - Suen Thinning – The algorithm I would like to use

The algorithm I prefer to use is called Zhang-Suen Thinning algorithm, which introduced in “A Fast Parallel Algorithm for Thinning Digital Patterns” written by T.Y. Zhang and C.Y. Suen.

In this algorithm, a 3X3 matrix is introduced as a mask of original binary image. The layout of the matrix showed as below:

[image:]

 (
Figure
18
. The layout of 3X3 matrix in Zhang-Suen algorithm
[15]
)
This method for extracting the skeleton of a picture consists of removing all the contour points of the picture except those points that belong to the skeleton. In order to preserve the connectivity of the skeleton, we divide iteration into two sub-iterations.[16]

In the first sub-iteration, the contour point P1 is deleted from the digital pattern if it satisfies the following conditions:
(a) 2 _< B(P1) -< 6
(b) A(P1) = 1
(c) P2*P4*P6 = 0
(d) P4*P6*P8 = 0
Where A(P1) is the number of 0-1 patterns in the ordered set P2, P3, P4, … P8, P9 that are the eight neighbors of P1, and B(Pi) is the number of nonzero neighbors of P1,that is:
B(P1) = P2 + P3 + P4 + … + P8 + P9.
[image:]If any condition is not satisfied, e.g., the values of P2, P3, P4 … P9 as shown in figure on the left, then A(P1) = 2.
		
Therefore, P1 is not deleted from the picture.

 (
Figure
19
 A 3X3 matrix with two 0-1 patterns
[16]
)

In the second sub-iteration, only conditions (c) and (d) are changed as follows:
(c') P2*P4*P8 = 0
(d') P2*P6*P8 = 0
And the rest remain the same.

By conditions (c) and (d) of the first sub-iteration, it will be shown that the first sub-iteration removes only the south-east boundary points and the north-west corner points which do not belong to an ideal skeleton. Similarly, it can be proved that the point P1 deleted in the second sub-iteration might be a north-west boundary point or a south-east corner point. [17]

By condition (a), the endpoints of a skeleton line are preserved. Also, condition (b) prevents the deletion of those points that lie between the endpoints of a skeleton line. The iterations continue until no more points can be removed. [17]
[image:]
A flowchart of Zhang-Suen thinning algorithm is shown on the right. Initially, the original binary image is stored in matrix IT and a counter C is set to 0. The result of the processed image is stored in matrix IT as well.

With comparing Zhang_Suen Thinning algorithm with the traditional iteration parallel morphological thinning, we can easily find out the former algorithm is much faster than the other.
The Zhang-Suen algorithm also very easy to understand and has high precision because it uses two sub-iterations to examine each pixel. The short spurs containing in the processed image are much less than iteration parallel morphological thinning.

Those distinct advantages made me to choose the Zhang-Suen algorithm as thinning method in this fingerprint recognition project.

 (
Figure
20
 The flowchart of Zhang-Suen thinning algorithm
[17]
)

3.4 Minutiae Extraction and validation

Most fingerprint recognition techniques, including the techniques I would like to use in my project are based on minutiae matching. The minutiae of a fingerprint, as I mentioned before are core points and major features of a fingerprint. There are six different types of minutia: ridge ending, ridge bifurcation, ridge divergence, island, ridge enclosure and short ridge.
The most fingerprint recognition techniques only focus on the first two types of minutiae – ridge ending and bifurcation.
[image:]
 (
Figure
21
 Ridge ending and bifurcation of a fingerprint
[18]
).

Minutiae extraction works after image thinning process. As the number of minutiae detected is more the probability of accurate result increases. The concept of Crossing Number (Cn) is widely used for extracting the minutiae. Rutovitz’s definition of crossing number for a pixel P is given below [19]:

[image:]

Where Pi is the binary pixel value in the neighborhood of P with Pi = (0 or 1) and P1 = P9. The crossing number Cn (P) at a point P is defined as half of cumulative successive differences between pairs of adjacent pixels belonging to the 8- neighborhoods of P. If Cn(P) = = 1 it’s a ridge ending and if Cn(P) = = 3 it’s a ridge bifurcation point.

[image:][image:]In other words, similar with Zhang-Suen thinning technique, we use a 3X3 matrix slide over the thinned fingerprint image to detect candidate minutiae. For example, if the matrix matches the pattern shown in figure 24, we say the pixel P is a ridge ending or bifurcation.

 (
Figure
22
 Two sample 3X3 matrix pattern of ridge ending and bifurcation
[20]
)

The 3X3 matrix slides over the thinned fingerprint image in sequence to collect all candidate minutiae.
[image:][image:]

 (
Figure
23
 An original thinned fingerprint (left) and a copy of the image with all candidate minutiae represented on it (
right
).
Square
s represent ridge endings and
circle
s represent bifurcations.
[21]

)

After candidate minutiae detection, the next step is to validate all candidate minutiae to eliminate false minutiae before matching stage. [22]
[image:][image:][image:][image:][image:]The false minutiae may be identified in the thinned binary image either as part of false minutia structures (e.g. spikes, bridges, holes, breaks, spurs, ladder structures) or at the boundary of the image region where the fingerprint pattern is located (boundary effect).
 (
Figure
24
 Some samples of false minutiae, from left to right are: spike, bridge, hole, break, spur, ladder

structures
[22]
)[image:]

The boundary effect is treated by cancelling all minutiae which are below a certain distance to the boundary of the fingerprint pattern. The other false minutiae can be eliminated by the following algorithm:

For each candidate minutia (ridge ending or ridge bifurcation) [23]:
1. [image:]Create an image L of size W x W and initialize it with 0. Each pixel of L corresponds to a pixel of the thinned image which is located in a W × W neighborhood centered in the candidate minutia.
2. (
Figure
25

Minutiae
 validation for a ridge ending
[23]
)Label with -1 the central pixel of L (Figure.27a, Figure.28a). This is the pixel corresponding to the candidate minutia point in the thinned ridge map image.
3. If the candidate minutia is a ridge ending then:
[image:](a) Label with 1 all the pixels in L which correspond to pixels connected with the candidate ridge ending in the thinned ridge map image (Figure.27b).
(b) Count the number of 0 to 1 transitions (T01) met when making a full clockwise trip along the border of the L image (Figure.27c).
(c) If T01 = 1, then validate the candidate minutia as a true ridge ending.
4. (
Figure
26
 Minutiae validation for a ridge bifurcation
[23]
)If the candidate minutia is a ridge bifurcation then:
(a) Make a full clockwise trip along the 8 neighborhood pixels of the candidate ridge bifurcation, and label in L with 1, 2 and 3 respectively the three connected components met during this trip (Figure. 28b).
(b) For each l = 1, 2, 3 (Figure.28 c,d,e), label with l all pixels in L which:
i. have the label 0;
ii. are connected with an l labeled pixel;
iii. correspond to 1 valued pixels in the thinned ridge map;
(c) Count the number of 0 to 1, 0 to 2 and 0 to 3 transitions met when making a full clockwise trip along the border of the L image. The above three numbers are denoted by T01, T02 and T03 respectively as shown in Figure.28f.
[image:](d) If T01 = 1 ^ T02 = 1 ^ T03 = 1, then validate the candidate minutia as a true ridge bifurcation.
The dimension W of the neighborhood analyzed around each candidate minutia is chosen larger than two times the average distance between two neighborhood ridges. In this way the algorithm succeeds to cancel close minutiae belonging to the same ridge.
 (
Figure
27
 An example of false minutiae detection for a hole configuration (a) and spike configuration (b)
[23]
)

After this algorithm, all false minutiae will be eliminated from thinned image and the image can be used in next stage of fingerprint recognition – minutiae matching.

3.5 Minutiae matching

There are three common fingerprint matching techniques: minutiae based, correlation based and ridge feature based. In my project the minutiae based matching is the matching technique used.
As I mentioned in this paper, the minutiae based matching technique contains five main steps [24]:
· Orientation filed estimation
· Ridge extraction
· Thinning
· Minutiae extraction
· Minutiae Matching
I have mentioned three steps in this paper already except orientation filed detection and minutiae matching steps, which will be described in details in this section.

3.5.1 [image:]Orientation filed detection
Informally, we can think of the orientation field of an image as line segments assigned to each pixel in the image to represent orientation of ridges. It defines the local orientation of the ridges contained in the fingerprint.
 (
Figure
28
 The orientation field of a fingerprint image.
T
he left picture is original image.
[24]
)
To estimate the orientation filed, we divide the image into serial 9X9 pixels blocks to define eight directions. The Figure 31 shows the layout of the matrix.
[image:]

 (
Figure
29
 The 9X9 direction matrix
[25]
)

For each pixel in the fingerprint image, to determine the orientation of the ridge, we mark the pixel as *, which at the center of the matrix. We calculate the average values of those 8 directions Gmean[i] (i = 0,1,…..7) and then organize those value into four groups: 0 and 4, 1 and 5, 2 and 6, 3 and 7. We calculate the different value of those four groups:

Gdiff [j] = (Gmean[j]-Gmean[j+4])	(j =0,1,2,3) [25]
The group has greatest absolute value is the two possible directions (iMax, iMax + 4) of the ridge. Let the gray value of the pixel * be Gray. The direction of the ridge is [25]:

			 iMax - If abs(Gray – Gmean[iMax]) < abs(Gray – Gmean[iMax+4])
*Dir =
			 iMax +4 - 	otherwise

In practice, we divide the fingerprint image into several non-overlapped 16X16 pixels blocks instead of 9X9 pixels to reduce the effect of noises contained in the image.

This method is easy to understand, but with this algorithm, the core point detection will become extremely difficult. The orientation field estimate technique I prefer to use is to do normalization with the fingerprint image first and then use some other formulas to determine the orientations.

Normalisation is used on fingerprint images to decrease the dynamic range of the gray scale between ridges and valleys of the image in order to facilitate the orientation field detection process. [26]

The general algorithm of normalization is:
Let Ι(i, j) denotes the gray-level value at pixel (i, j) , Mi and Vi denotes the estimated mean and variant of image I, respectively, and N(i, j) denotes the normalized gray-level value at the pixel (i, j) . The normalized image is then defined as follows: [24]
[image:]

[image:]Here M0 and V0 are the desired mean and variant respectively. The mean and variant of a gray-level fingerprint image with the dimension of M×N pixels are defined respectively as: [24]

The normalized fingerprint image showed in Figure 32 below.

[image:][image:]

 (
Figure
30
. The fingerprint image after
normalization
 (right) and its original image. (left)
)

After normalization, the orientation field can be detected by the following steps: [27]

1. Firstly, a block of size W × W is centre at pixel (i; j) in the normalized fingerprint image.
2. For each pixel in the block, compute the gradients x (i; j) and y (i; j), which are the gradient magnitudes in the x and y directions, respectively.
The horizontal Sobel operator is used to compute x (i; j):
[image:]

[image:]The vertical Sobel operator is used to compute y (i; j):

3. The local orientation at pixel (i; j) can then be estimated using the following equations:
[image:]

Where (i; j) is the least square estimate of the local orientation at the block centred at pixel (i; j).
4. Smooth the orientation field in a local neighbourhood using a Gaussian filter. The orientation image is firstly converted into a continuous vector field, which is defined as:
[image:][image:]

[image:]Where x and y are the x and y components of the vector field, respectively. After the vector field has been computed, Gaussian smoothing is then performed as follows:

[image:]

Where G is a Gaussian low-pass filter of size w × w.

5. The final smoothed orientation field θ′ at pixel (i; j) is defined as:
[image:]

The orientation field determined with this technique is more accurate and easy to extract the core point of the fingerprint image, which known as the reference point of the fingerprint matching.
At the moment, the core point based local matching technique is the matching scheme I would like to use in my project.

3.5.2 Minutiae matching
[image:]
There are many different fingerprint matching techniques wildly used. The core point based local matching technique is an efficient, easy to understand technique. The core point of a fingerprint is the highest curved point.
 (
Figure
31
 X is the core piont of a
F
ingerprint

[27]
)The Geometry of Region technique (GR) is the most common and best result algorithm of core point detection.
The algorithm of GR showed below: [24]
1) Compute the smoothed orientation field θ′(i, j) by the equation in step 5 of orientation field estimation.
2) [image:]Compute ε (i, j), which is the sine component of θ ′(i, j)

3) Initialize a label image A which is used to indicate the core point.

4) [image:]Assign the corresponding pixel in A the value of the difference in integrated pixel intensity of each region

The region R1 and R2 were determined empirically and also their geometry is designed to capture the maximum curvature in concave ridges. In practice, the region is defined within the radius of 10-15 pixels (should cover at least 1 ridge). In addition R1 that is sandwiched R2 is expected to hold the maximum point.

5) Find the maximum value in A and assign its coordinate as the core point.

6) If the core point still cannot be located, the steps (1-5) could be iterated for a number of times while decreasing the window size used in step 1) above.
For instance; w = 15, 10 and 5 pixels respectively.

After these six steps, the corn point will be extracted. We save the corn point into database.

To matching two fingerprint images. The minutiae information of these two images must be saved in the database. For each minutia, its X and Y coordinate (row and column no. of the pixel), type (ridge ending or bifurcation) and the absolute distance to core point of the image it in.
A pair of minutiae can be said a match pair if they are same type of minutiae and the absolute different value >=0 and <= Er where Er is error rate value. A suitable error rate value is necessary because it is very common to get a non-zero absolute different value even two fingerprint images obtained from a same finger.
[image:]After all pairs of minutiae been matched, instead of give a Boolean value as a result of images matched or not, the match rate been introduced to give a reference of recognition result: [28]
	
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]where R is the match rate, and k is the matched pair count, m, n are the minutiae count from template and input fingerprint image. If the value of R is greater than a threshold value, then we say the two fingerprint images could be two copies of a same finger.

This matching technique, as I mentioned, is efficient and easy to understand or implement into code. The disadvantage of this method is the images must contain high quality and rotation sensitive. That is means the accuracy of the result generated by this algorithm may be affected by the difference of rotation of two images.
The core point based local matching technique may not be the best choice for my project. After examine the result of the comparison, I may decide to change to another technique of matching.
4. Other relevant researches
In the last chapter, I mentioned researches I did about main fingerprint recognition techniques in details. The other relevant researches – structure of the database, programming language of the project will be mentioned in this chapter.

4.1 Database structure

[image:]In fingerprint recognition, a well designed database should be provided to store a large amount of data of each enrolled fingerprint image.
 (
Figure
32
 Modules relationship diagram
)
In the Figure 34 above, the information of processed fingerprint image will be saved into the system database. After doing detailed technique researches, I found there are several attributes of a fingerprint image should be saved into database:
	For every processed image:
· Image_Id: holds the id of the processed fingerprint image.
· No_Min: holds amount of minutiae in the image.
· Rotation: holds the degree of image rotation.
· Original_Image:	 holds the filename of the original fingerprint image.

For every minutia in a processed image:
· Min_Id:	 holds the id of the minutia.
· Image_Id: holds the id of the fingerprint image which the minutia in.
· Min_Type: holds the minutia type.
· X_Coor:	holds location of the minutia on X coordinate.
· Y_Coor:		holds location of the minutia on Y coordinate.
· Rotation: holds the degree of minutia rotation.

So, in the database of my project, there should be two tables in it – Image and Minutia.
Image table holds all attributes of a processed fingerprint image and Image_Id attribute is the primary key of the table. Minutia table holds all attributes of minutiae and Min_Id is the primary key. Those two tables are connected with each other by Image_Id. One processed image may contain numbers of minutiae. In the database, several instances of Minutia table may contain same value in Image_Id attribute.

With this database structure, the main attributes of a processed fingerprint image can be easily recorded. The attributes saved can also be extracted from database for matching process use.

4.2 Programming Language

Using a suitable programming language is also important. After research, I found C# may be the best choice for this project.
C# is intended to be a simple, modern, general-purpose, object-oriented programming language. [29] The syntax of C# is very similar to Java which another OOP language I used.
C# supports GDI+ will make image process easier to program. In C#, database connection is also easy and straight forward.

C# has a well designed library. All classes and their usage and explanation can be found in it. With Microsoft Visual C# IDE, GUI programming and design will also easier to be done.

5. Conclusion

In this paper, I described all relevant researches on fingerprint recognition and image process techniques. After these researches, I got a clear image of fingerprint recognition and I found numbers of algorithm and ideas for project solutions.

However, the techniques and algorithms in this research manual may does not suit for this project and I may use some other more suitable techniques and algorithms instead those I mentioned in this paper after programming start. If I do so, I will mention them in further report paper.

Before doing detailed research, I just have interest in this topic without ideas of its relevant techniques and problem solutions. Now I have knowledge of fingerprint recognition to solve this kind problem. I now have confidence to produce qualified fingerprint recognition application.

After those detailed researches, the project design and coding may start. There is no doubt that those researches will give a great help on these two phases.

Bibliography

[1] Anil K. Jain, Fingerprint Recognition, Michigan State University Press, pp7, 2004.

[2] WikiPedia, Integrated Automated Fingerprint Identification System,
http://en.wikipedia.org/wiki/Integrated_Automated_Fingerprint_Identification_System
(Last visit: 28th Nov, 2009, 18:40)

[3] A. Jain, L. Hong, S. Pankanti, and R. Bolle, On-line identity-authentication system using fingerprints, Proceedings of IEEE (Special Issue on Automated Biometrics), vol. 85, pp. 1365–1388, September 1997.

[4] Lei Huang, Genxun Wan, Changping Liu. An Improved Parallel Thinning Algorithm. Computer Society IEEE. 0-7695-1960-1/03,2003

[5] Davide Maltoni, Dario Maio, Anil K. Jain and Salil Prabhakar, Handbook of Fingerprint Recognition, Second edition, Springer-Verlag London Limited, pp 178, 2009.

[6] Anil Jain and Sharath Pankanti, Fingerprint Classification and Matching, Michigan State University Press, pp 27, 2004.

[7] Nalini IS. Ratha, Vinayaka D. Pandit, Ruud M. Bolle and Vaibhav Vaish Robust, Fingerprint Authentication Using Local Structural Similarity, 0-7695-0813-8/00, IEEE 2000.

[8] Bill Green (2002), Raster Data Tutorial.
http://www.pages.drexel.edu/~weg22/raster.html
(Last visit: 12th Nov, 2009, 09:20)

[9] Duan Rui-ling, LI Qing-xiang and LI Yu-he, Summary of image edge detection, Optical Technique, Vol.31 No3.1002-1582 (2005) 03-0415-05, May, 2005.

[10] Bill Green (2002), Edge Detection Tutorial.
http://www.pages.drexel.edu/~weg22/edge.html
(Last visit: 12th Nov, 2009, 09:50)

[11] Bill Green (2002), Canny Edge Detection Tutorial.
http://www.pages.drexel.edu/~weg22/can_tut.html
(Last visit: 13th Nov, 2009, 16:50)

[12] John Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6. Nov 1986, pp 679.
[13] Christopher M. Holt, Alan Stewart, Maurice Clint, Ronald H. Perrott, An improved parallel thinning algorithm, Communications of the ACM, Vol.30 No.2, pp156-160, Feb 1987

[14] Lei Huang, Wan Genxun, Liu Changping, An Improved Parallel Thinning Algorithm, Computer Society IEEE. 0-7695-1960-1/03, 2003.

[15] T.Y. Zhang and C.Y. Suen, A Fast Parallel Algorithm for Thinning Digital Patterns, Communication of the ACM, Vol.27 No.3. pp 236, Mar 1984.

[16] T.Y. Zhang and C.Y. Suen, A Fast Parallel Algorithm for Thinning Digital Patterns, Communication of the ACM, Vol.27 No.3. pp 237, Mar 1984.

[17] T.Y. Zhang and C.Y. Suen, A Fast Parallel Algorithm for Thinning Digital Patterns, Communication of the ACM, Vol.27 No.3. pp 238, Mar 1984.

[18] Manvjeet Kaur, Mukhwinder Singh, Akshay Girdhar, and Parvinder S. Sandhu, Fingerprint Verification System using Minutiae Extraction Technique, World Academy of Science, Engineering and Technology, Vol.46, 2008, pp 497.

[19] A. K. Jain, F. Patrick, A. Arun, Handbook of Biometrics, Springer Science + Business Media, LLC, 1st edition, pp1-42, 2008.

[20] Manvjeet Kaur, Mukhwinder Singh, Akshay Girdhar, and Parvinder S. Sandhu, Fingerprint Verification System using Minutiae Extraction Technique, World Academy of Science, Engineering and Technology, Vol.46, 2008, pp 499.

[21] Marius Tico, Pauli Kuosmanen, An Algorithm for Fingerprint Image Postprocessing, Computer Society IEEE. 0-7803-6541-3/00, 2000. pp 1739.

[22] Marius Tico, Pauli Kuosmanen, An Algorithm for Fingerprint Image Postprocessing, Computer Society IEEE. 0-7803-6541-3/00, 2000. pp 1736.

[23] Marius Tico, Pauli Kuosmanen, An Algorithm for Fingerprint Image Postprocessing, Computer Society IEEE. 0-7803-6541-3/00, 2000. pp 1737 – pp 1738.

[24] Atipat Julasayvake and Somsak Choomchuay, AN ALGORITHM FOR FINGERPRINT CORE POINT DETECTION, Computer Society IEEE. 1-4244-0779-6/07,2007.

[25] Luo Xiping and Tian Jie, Image Enhancement and Minutia Matching in Fingerprint Verification, AILAB, Institute of Automation, The Chinese Academy of Sciences, 2002.

[26]	Raymond Thai, Fingerprint Image Enhancement and Minutiae Extraction, The University of Western Australia, 2003, pp 16.

[27] Raymond Thai, Fingerprint Image Enhancement and Minutiae Extraction, The University of Western Australia, 2003, pp 8-10.

[28] Weiwei Zhang, Sen Wang, Yangsheng Wang, Structure Matching Algorithm of Fingerprint Minutiae Based on Core Point, National Laboratory of Pattern Recognition,2005, pp 7.

[29] WikiPedia, C Sharp (programming language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
(Last visit: 20th Nov, 2009, 21:05)

Fingerprint Recognition – Research Manual 	 Wen Liu C00105088 	 21

image3.emf

image4.gif

image5.gif
Door Lock

Entrance Control Cell-phone

safe Notebook
Physical Mobile
Access hecess

Other
(Vehicle, Arms) POA
Network Access.
(non-mobile)
Sensing Terminal Smart card

e-Commerce

image6.gif

image7.gif

image8.gif

image9.jpeg
Figure 6: Flowchart of the minutiae exteaction algorithn [18]. ©IEEE.

image10.emf

image11.png
7—\

o

image12.png

image13.png
£

image14.emf

image15.gif

image16.gif

image17.gif
'!"

image18.gif

image19.gif

image20.gif

image21.png
Parallel
Ridges

A pixel on
the ridge

A ridge
bifurcation

Parallel
Ridges

A pixel on
the ridge

Aridge
ending

image22.emf

image23.emf

image24.emf

image25.emf

image26.png

image27.jpeg
-1 0 | +1 +1 | +2 [+1

2| 0 [+2 0|00

1] 0 [+1 -1]2 |1
Gx Gy

image28.jpeg
Input Image Mask Output Image

an | an | an an my | me | mg by | be | b by
| a2 | A a my | ma | ma by | b2 | b by
am | e | A a my | me | mg by | b2 | b by

b= (3" Me) + @i Md + @AM + (@27 Ma) + (@2 Ma) + (A22°MMz) + (A" Mz + (B M) + (3" M) + (™M)

image29.jpeg

image30.jpeg
T 5 |12 15 |12 | &

Tigure 3 Discrete approximation to Gaussian function with =14

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.gif
HMoooooofocooo

Moccoooco

oMMc ccoooo

000000 00000COCO0CCQ

ofoc oo coooo
o ENENMNENC o Mo oo o 00

o
o
o

o0oMooo000000000
Wocooooooo
Wooooooooo
Wooooooooo
Woooooooooo

cocllocooocoooo 00

0000000000000000
offlcccccococcoco

00000000000 C0000C0

0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

image38.png
Pas

X

® 00

XXX

X @ X
X0 X
X0 X

XXX
Olee®

XK X

P

O

X| @ X
X|® X

image39.png
C, =2 Ni=(N;oN,. *N,.o)
=

image40.png
N4

NS

NG

N3

NO

NT

N2

N1

N

image41.png
Py P Py
=1i=1 =1 i=1j+1)
Py P, P,

Gj=1 G j) G+ 1)

[Py Py
i+1,j=1) (i+1,)) i+1,j+1)

image42.emf

image43.png
o condsansa .

et sostrston)
G- G M =

image44.png
Ending

Bifurcation

image45.png
@) =-GXIE-Lal

image46.png
Po| P
P
¥ IR

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png
i TT u]]
1

(a) b (c)

image57.png
i

=
i

@)

T Uy T

=zl

b

iy (&)

image58.png
To=! Tos=0 Top=1

image59.png

image60.png
1

2|3/4|5|6

6|5/4/3|2

1

image61.png
[V 1M
Mo+ \}‘7"“‘”’(,’ M i 1G,j)> M
N(,j)= PR
i) [Va16i,j)-M, .
Mo [T ieregice

image62.png
1 M-IN-1
M)=—— 16, j).
MN Eo =3

and
1 M-1N-1
V(D=—=Y 3G,j)-MI)?
i=0 j=0

image63.png

image64.png

image65.emf

image66.emf

image67.emf

image68.png
®,(1,7) = sin(20(3, 7)),

image69.png
D, (3, j) = cos(20(3, 7)),

image70.png
i 3 i
£l £l

(i,) = Zﬂ Z,, G(u,v)®,(i — uw, j — vw),

3

image71.png
=3 e
£l £l

), (i,j) = Zé X Gl)®y (i —uw,j—vw)

image72.png
(i,]
9’(1‘,7‘):%1:171’1[ik ’)]

DL,)

image1.png
" TP
TECHNOLOGY
/JCARLOW

At the Heart of South Leinster

image73.png

image74.png
sin(6'(i, j))

image75.png
A(i,j) =Y e(i,)= Y e(i,),
R1 R2

image76.png
R=Vk*k'm*n

image77.jpeg
Enroliment Module

Image
Enhancement
Image Minutia
Thinning Extraction

u
Interface

System
Database

Matching Madule

Matching

Minutiae

Scoring

Matching

image2.jpeg

